CARSO - LABORATOIRE SANTÉ ENVIRONNEMENT HYGIÈNE DE LYON

Laboratoire Agréé pour les analyses d'eaux par le Ministère de la Santé

Edité le : 11/10/2019

Rapport d'analyse Page 1 / 3

ARS NORD PAS DE CALAIS - PICARDIE

N° Prélèvement: 00270379

Direction de la Santé publique et Environnementale Dép. Santé Environnementale - 556 av. Willy Brandt 59777 EURALILLE

Le rapport établi ne concerne que les échantillons soumis à l'essai. Il comporte 3 pages.

La reproduction de ce rapport d'analyse n'est autorisée que sous la forme de fac-similé photographique intégral.

L'accréditation du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation, identifiés par le symbole #.

Les paramètres sous-traités sont identifiés par (*).

Identification dossier: LSE19-179006
Identification échantillon: LSE1910-31733-1

SE1910-31733-1 Analyse demandée par : ARS DT DU NORD

Doc Adm Client: ARS 2019
N° Analyse: 00270379

Nature: Eau de production (turb>2)

Point de Surveillance : STATION REPRISE DE PREMESQUES Code PSV : 0000001183

Localisation exacte: SORTIE USINE

Dept et commune: 59 PREMESQUES

UGE: 0133 - EAUX DU NORD

UGE: U133 - EAUX DU NORD

Type d'eau : T2 - ESU+ESO TURB>2 POUR TTP >1000 M3J

Type de visite : P2 Type Analyse : DIV Motif du prélèvement :

CD

Nom de l'exploitant : OPELYS

OPÉRATEUR DE PRODUCTION EAUX LA LYS

188 ROUTE DE MAMETZ 62120 AIRE SUR LA LYS

Nom de l'installation : PREMESQUES PRODUCTION SMAEL Type : TTP Code : 000876

OPELYS

Prélèvement : Prélevé le 09/10/2019 à 10h27 Réception au laboratoire le 09/10/2019

Prélevé et mesuré sur le terrain par CARSO LSEHL / HOUILLIER Audrey Prélèvement accrédité selon FD T 90-520 et NF EN ISO 19458 pour les eaux de

consommation humaine Flaconnage CARSO-LSEHL

Les données concernant la réception, la conservation, le traitement analytique de l'échantillon et les incertitudes de mesure sont consultables au laboratoire. Pour déclarer, ou non, la conformité à la spécification, il n'a pas été tenu explicitement compte de l'incertitude associée au résultat.

Date de début d'analyse le 09/10/2019

Paramètres analytiques		Résultats	Unités	Méthodes	Normes	Limites de qualité	Références de qualité
Mesures sur le terrain Température de l'eau pH sur le terrain	59HAP+ 59HAP+	13.5 7.7	°C -	Méthode à la sonde Electrochimie	Méthode interne M_EZ008 v3 NF EN ISO 10523		25 6.5 9

.../...

CARSO-LSEHL

Rapport d'analyse Page 2 / 3

Edité le : 11/10/2019

Identification échantillon: LSE1910-31733-1

Destinataire : ARS NORD PAS DE CALAIS - PICARDIE

Doc Adm Client : ARS 2019

Doc Adm Client :	ARS 2019							
Paramètres analytiques		Résultats	Unités	Méthodes	Normes	Limites de qualité	Références de qualité	
Conductivité brute à 25°C sur le terrain	59HAP+	618	μS/cm	Méthode à la sonde	NF EN 27888		200 1100) #
Chlore libre sur le terrain	59HAP+	0.46	mg/l Cl2	Spectrophotométrie à la DPD	NF EN ISO 7393-2			#
Chlore total sur le terrain	59HAP+	0.51	mg/l Cl2	Spectrophotométrie à la DPD	NF EN ISO 7393-2			#
Caractéristiques organoleptiqu Turbidité	es	0.18	NFU	Néphélométrie	NF EN ISO 7027	1	0.5	5 #
Analyses physicochimiques Analyses physicochimiques de	base							
Indice hydrocarbures (C10-C40)		< 0.1	mg/l	GC/FID	NF EN ISO 9377-2			#
Métaux								
Aluminium total	MS2	< 0.010	mg/l Al	ICP/MS après acidification et décantation	ISO 17294-1 et NF EN ISO 17294-2		0.2	2 #
Arsenic total	MS2	< 0.002	mg/l As	ICP/MS après acidification et décantation	ISO 17294-1 et NF EN	0.01		#
Chrome total	MS2	< 0.005	mg/l Cr	ICP/MS après acidification et	ISO 17294-1 et NF EN	0.05		#
Fer total		< 10	μg/l Fe	décantation ICP/MS après acidification et	ISO 17294-2 ISO 17294-1 et NF EN		200) #
Manganèse total	MS2	< 0.010	mg/l Mn	décantation ICP/MS après acidification et	ISO 17294-2 ISO 17294-1 et NF EN		0.05	; #
Baryum total	MS2	0.016	mg/l Ba	décantation ICP/MS après acidification et	ISO 17294-2 ISO 17294-1 et NF EN		0.70) #
Bore total	MS2	0.019	mg/l B	décantation ICP/MS après acidification et	ISO 17294-2 ISO 17294-1 et NF EN	1.0		#
Antimoine total	MS2	< 0.001	mg/l Sb	décantation ICP/MS après acidification et	ISO 17294-2 ISO 17294-1 et NF EN	0.005		#
Argent total	MS2	< 0.001	mg/l Ag	décantation ICP/MS après acidification et	ISO 17294-2 ISO 17294-1 et NF EN			#
Cadmium total	MS2	< 0.001	mg/l Cd	décantation ICP/MS après acidification et	ISO 17294-2 ISO 17294-1 et NF EN	0.005		#
Cuivre total	MS2	< 0.010	mg/l Cu	décantation ICP/MS après acidification et	ISO 17294-2 ISO 17294-1 et NF EN	2.0	1.0	, #
Sélénium total	MS2	< 0.002	mg/l Se	décantation ICP/MS après acidification et	ISO 17294-2 ISO 17294-1 et NF EN	0.01		#
Zinc total	MS2	< 0.010	mg/l Zn	décantation ICP/MS après acidification et	ISO 17294-2 ISO 17294-1 et NF EN			#
Cobalt total	MS2	< 0.005	mg/l Co	décantation ICP/MS après acidification et	ISO 17294-2 ISO 17294-1 et NF EN			#
Nickel total	MS2	< 0.005	mg/l Ni	décantation ICP/MS après acidification et	ISO 17294-2 ISO 17294-1 et NF EN	0.020		#
Plomb total	MS2	< 0.002	mg/l Pb	décantation ICP/MS après acidification et	ISO 17294-2 ISO 17294-1 et NF EN	0.010		#
Etain total	MS2	< 0.005	mg/l Sn	décantation ICP/MS après acidification et	ISO 17294-2 ISO 17294-1 et NF EN			#
Beryllium total	MS2	< 0.005	mg/l Be	décantation ICP/MS après acidification et	ISO 17294-2 ISO 17294-1 et NF EN			#
Vanadium total	MS2	< 0.005	mg/l V	décantation ICP/MS après acidification et	ISO 17294-2 ISO 17294-1 et NF EN			#
Lithium total	MS2	< 0.010	mg/l Li	décantation ICP/MS après acidification et	ISO 17294-2 ISO 17294-1 et NF EN			
Strontium total	MS2	0.258	mg/l Sr	décantation ICP/MS après acidification et	ISO 17294-2 ISO 17294-1 et NF EN			#
Molybdène total	MS2	< 0.005	mg/l Mo	décantation ICP/MS après acidification et	ISO 17294-2 ISO 17294-1 et NF EN			#
Mercure total		< 0.01	μg/l Hg	décantation Fluorescence après	ISO 17294-2 Méthode interne	1.0		#
				minéralisation bromure-bromate	M_EM156			
Thallium total	MS2	< 0.001	mg/l Tl	ICP/MS après acidification et décantation	ISO 17294-1 et NF EN ISO 17294-2			#
Titane total	MS2	< 0.010	mg/l Ti	ICP/MS après acidification et décantation	ISO 17294-1 et NF EN ISO 17294-2			#
COV : composés organiques ve	olatils							
Benzène		< 0.5	μg/l	HS/GC/MS	NF EN ISO 11423-1	1.0		#
HAP : Hydrocarbures aromatiq	ues polycyclique	es						

CARSO-LSEHL

Rapport d'analyse Page 3 / 3

Edité le : 11/10/2019

Identification échantillon: LSE1910-31733-1

Destinataire: ARS NORD PAS DE CALAIS - PICARDIE

Doc Adm Client: ARS 2019

Paramètres analytiques		Résultats	Unités	Méthodes	Normes	Limites de qualité	Références de qualité	
HAP								_
Acénaphtène	59HAP+	< 0.010	μg/l	GC/MS après extr. SPE	Méthode M_ET083			#
Anthracène	59HAP+	< 0.005	μg/l	GC/MS après extr. SPE	Méthode M_ET083			#
Benzo (a) anthracène	59HAP+	< 0.005	μg/l	GC/MS après extr. SPE	Méthode M_ET083			#
Benzo (b) fluoranthène	59HAP+	< 0.005	μg/l	GC/MS après extr. SPE	Méthode M_ET083			#
Benzo (k) fluoranthène	59HAP+	< 0.005	μg/l	GC/MS après extr. SPE	Méthode M_ET083			#
Benzo (a) pyrène	59HAP+	< 0.005	μg/l	GC/MS après extr. SPE	Méthode M_ET083	0.010		#
Benzo (ghi) pérylène	59HAP+	< 0.005	μg/l	GC/MS après extr. SPE	Méthode M_ET083			#
Indéno (1,2,3 cd) pyrène	59HAP+	< 0.005	μg/l	GC/MS après extr. SPE	Méthode M_ET083			#
Chrysène	59HAP+	< 0.005	μg/l	GC/MS après extr. SPE	Méthode M_ET083			#
Dibenzo (a,h) anthracène	59HAP+	< 0.005	μg/l	GC/MS après extr. SPE	Méthode M_ET083			#
Fluoranthène	59HAP+	< 0.005	μg/l	GC/MS après extr. SPE	Méthode M_ET083			#
Fluorène	59HAP+	< 0.005	μg/l	GC/MS après extr. SPE	Méthode M_ET083			#
Naphtalène	59HAP+	< 0.010	μg/l	GC/MS après extr. SPE	Méthode M_ET083			#
Pyrène	59HAP+	< 0.005	μg/l	GC/MS après extr. SPE	Méthode M_ET083			#
Phénanthrène	59HAP+	< 0.010	μg/l	GC/MS après extr. SPE	Méthode M_ET083			#
Somme des 4 HAP quantifiés	59HAP+	< 0.005	μg/l	GC/MS après extr. SPE	Méthode M_ET083	0.100		
Somme des 6 HAP quantifiés		< 0.005	μg/l	GC/MS après extr. SPE	Méthode M_ET083			

MS2 METAUX TOTAUX (SCREENING SEMI-QUANT. ICP/MS)

59HAP+ ANALYSE (15HAP) (ARS59-2013)

Limites et références de qualité selon la réglementation en vigueur.

Les résultats sont rendus en prenant en compte les matières en suspension (MES) sauf quand la filtration est indiquée dans les normes analytiques.

Amandine MARTIN-MICHELOD Ingénieur de Laboratoire

A